
Ололо пыщь пыщь

Typical vulnerabilities in
Lightning Apps

Igor Korsakov / bluewallet.io / Berlin / October, 2019

Plan

1. Double spends with hold-invoices; anatomy of sendPayment
2. Stealing free fees
3. Race-condition attacks
4. Negative amounts
5. ...
6. Profit!
7. Best practices

What is a Lapp?

A web app that can interact with the Lightning network:

● Receive payment
● Send payment
● Authenticate (sign with node’s key)

Bob

Charlie

Alice

1. Create preimage
2. payment_hash = hash(preimage)
3. Create bolt11 invoice with payment_hash, amount,
description, signature
4. Give invoice to Alice
5. Alice sends HTLC to Bob protected by payment_hash
promising that Charlie has solution to hash
6. Bob sends HTLC to Charlie protected by same hash
7. Charlie reveals preimage in order to get the payment

HTLC

HTLC

Hold-invoice attack
Anatomy of SendPayment

router.post('/payinvoice', function(req, res) {

 if (userBalance >= num_satoshis) {
 // got enough balance

 lightning.sendPayment(invoice, function(err, result) {
 // callback with result of sent payment
 reduceUserBalance(num_satoshis);
 });
 }

});

Hold-invoice attack

Hold-invoice attack. Execution

Hold-invoice attack. Execution

$ # in lnd folder
$ make tags="invoicesrpc" && make install tags="invoicesrpc"

$ cat invoices.sh
PREIMAGE=$(cat /dev/urandom | tr -dc 'a-f0-9' | fold -w 64 | head -n 1)
HASH=`node -e "console.log(require('crypto').createHash('sha256').update(Buffer.from('$PREIMAGE', 'hex')).digest('hex'))"`

echo "lncli settleinvoice $PREIMAGE" >> settle.sh
INV=`lncli addholdinvoice $HASH --expiry 600 --amt 99`
INV2=`echo $INV | awk '{print $3}' | sed "s/[^a-zA-Z0-9']//g"`
echo "pre = $PREIMAGE hash = $HASH"
echo $INV2
echo $INV2 | qrcode-terminal

Hold-invoice attack. Execution

Hold-invoice attack. Protection

● Atomically lock out full withdrawal amount (with fees) before doing anything
else

● Lock should not auto-expire. Release lock only when payment is in
determined state (either failed or went through)

● Check stuck payments periodically (usually up to ~1day):

$ lncli listpayments

or smth like that

● Disregard invoice expiry

Bob - fees
666%

Charlie -
destination

Alice -
payer

Stealing free fees
HTLC

HTLC1. Offer free withdrawals
2. Someone sets intermediate node

with high fees
3. ...
4. Profit!

FEE LIMIT won’t help!

Stealing free fees. Protection

1. Don’t giveaway fees: feelimit - lock payment amount + feelimit
2. OR calculate route’s fees and add them to amount when charging user

Probe route example

Race-condition attacks

router.post('/payinvoice', function(req, res) {

 if (userBalance >= num_satoshis) {
 // got enough balance

 lightning.sendPayment(invoice, function(err, result) {
 // callback with result of sent payment
 reduceUserBalance(num_satoshis);
 });
 }

});

Race-condition attacks. Protection
router.post('/payinvoice', function(req, res) {

 if (!(await lock.obtainLock())) {
 return errorTryAgainLater(res);
 }

 if (userBalance >= num_satoshis) {
 // got enough balance

 lightning.sendPayment(invoice, function(err, result) {
 // callback with result of sent payment
 reduceUserBalance(num_satoshis);
 });
 }

});

Negative amounts

router.post('/addinvoice', function(req, res) {
 if (req.body.amt < 0) return errorBadArguments(res);

 ...

});

Negative amounts. Protection

Write tests!

Worth nothing! Other risks

● Unsafe zero-amount invoices
● Unsafely-opened channels
● DDOS to prevent you from issuing retaliate tx
● Observing counterparty offline/online patterns to choose best timing to issue

old state tx
● All web-app vulnerabilities apply to you! XSS, injections, fuzzing, etc. Study

OWASP!

As LN economy grows, be sure. Black hats will come. Tooling will be made,
exploits will be written.

Best practices

1. Don’t store user balance as single variable. It should be a sum of all
transactions

2. Don’t store amounts as float, only as int. Signed int is ok, no point to enforce
unsigned int everywhere

3. RDBMS and Transactional databases are nice to have
4. Log everything, and keep all logs
5. Do regular accounting. At least daily, and investigate if actual values differ from

expected
6. Don’t be obsessed with MVP

Acknowledgements

1. Justin Camarena from Bitrefill
2. Andrey Samokhvalov from Bitlum/Zigzag
3. Great guys from https://ion.radar.tech

“Not great, just ok”

“Just another wallet”

“Some features”

“Only one coin”

“Meh”
“Could be better” i@bluewallet.io

← even Roger is
not impressed

